Processing math: 0%

Friday, November 22, 2013

1.1 Additive Properties of Sequences - Theorem 1.1.1 (L. G. Shnirelman)

The details in these notes are taken from A. O. Gelfond & Yu. V. Linnik, elementary methods in analytic number theory, 1965 (translated by Amiel Fienstein/Revised and edited by L. J. Mordell).


Definition 1:  infinite sequence of integers

Let any capital Latin letter (e.g. A, B, C, ...) denote an infinite sequence where each term is distinct and in numerical order with the first term 0.

For example, A would represent:
0,a_1,a_2,a_3, \dots
where
0 < a_1 < a_2 < a_3 < \dots

Definition 2:  number of terms not exceeding n

Let A(n) be numerical function on sequences defined as the number of terms not exceeding n so that:
A(n) = \sum_{0 < a_i \le n} 1

For example:
0\le\frac{A(n)}{n}\le1

Definition 3:  infinitum (inf)

For a given set S, the greatest integer that is less than or equal to all elements in S.

Examples:

\inf\, \{1,2,3\}=1
\inf\, \{ x \in \mathbb{Z} : 0 < x < n \} = 1

Definition 4:  density of a sequence

The density d(A) of a sequence A is defined as:
d(A) = \inf_n \frac{A(n)}{n}

Examples:

  • if 1 \notin A, then d(A)=0
  • d(A)=1 if and only if A contains all the positive integers.
  • The densities of squares, cubes, and prime numbers equal 0.
  • \forall{n}\, A(n) \ge n*d(A) 


Theorem 1.1.1 (L. G. Shnirelman)

d(A+B) \ge d(A) + d(B) - d(A)d(B)

Proof:
(1)  Let C = A+B such that c \in C implies c = a + b where a \in A, b \in B

(2)  Let \alpha=d(A), \beta=d(B), \gamma=d(C)

(3)  There are A(n) numbers in A in the interval [1,n] each of which appears in C since 0 \in B.

(4)  Let a_k, a_{k+1} be any two adjacent numbers in A.

(5)  Let l_k = a_{k+1}-a_k-1, so that if l_k > 0, we have the following numbers not in A:

a_k+1, a_k+2, \dots, a_k+l_k = a_{k+1}-1
(6)  For a given a_k,a_{k+1}, B(l_k) is equal to count of the numbers in between a_k and a_{k+1} that are in C since 1 \le r \le l_k and r \in B implies that a_k + r \in C.

(7)  From step(6), we have:
C(n) \ge A(n) + \sum_{k \le A(n)}{B(l_k)}
where each l_k is taken from the intervals between numbers of the form a_k and a_{k+1}

(8)  For each k, B(l_k) \ge \beta{l_k}. [From Definition 4 above]

(9)  So, from step(7), we have:
C(n) \ge A(N) + \beta\sum_{k \le A(n)}{l_k} = A(n) + \beta(n - A(n))
=A(n)(1 - \beta) + \beta{n} \ge \alpha(1 - \beta)n + \beta{n}

(10)  For all n \ge 1, we have:
\gamma=d(A+B)=\inf_n\frac{C(n)}{n} \ge \alpha + \beta - \alpha\beta

QED

Corollary:

d(A_1 + \dots + A_k) \ge 1 - \prod_{i=1}^k{(1 - d(A_i))}

Proof:

(1)  From Theorem 1.1.1 above:
1 - d(A+B) \le 1 - d(A) - d(B) + d(A)d(B) = (1 - d(A))(1 - d(B))
(2)  So that:
d(A+B)-1 \ge -(1-d(A))(1-d(B))
(3)  Which shows the case for k=2 where:
d(A+B) \ge 1 - (1 - d(A))(1 - d(B))
(4)  Assume that it is true up to some k \ge 2 so that:
d(A_1 + \dots + A_k) \ge 1 - \prod_{i=1}^k{(1 - d(A_i))}
(5)  Let B = A_1 + \dots + A_k

(6)  From step(3) above, we have:
d(B + A_{k+1}) \ge 1 - (1 - d(B))(1 - d(A_{k+1}))
(7) From step(4), we have:
-d(B) \le -1 +\prod_{i=1}^{k}(1 - d(A_i))
(8)  Which gives us:
1-d(B) \le  \prod_{i=1}^{k}(1 - d(A_i))
(9)  Combining step(8) with step(6) gives us:
d(A_1 + \dots + A_{k+1}) \ge 1 - \prod_{i=1}^k(1 - d(A_i))(1 - d(A_{k+1}))
QED

No comments:

Post a Comment